圖10 實(shí)驗(yàn)?zāi)P?/div>
2.3 余量優(yōu)化結(jié)果
動態(tài)配準(zhǔn)中面葉片點(diǎn)云F、S,計(jì)算變換矩陣Rexp、Texp:
format-18.jpeg (45.42 KB, 下載次數(shù): 61)
下載附件
2022-10-12 10:59 上傳
(8)
將式(8)應(yīng)用于原始外輪廓測點(diǎn),得到配準(zhǔn)后葉片理論模型與測量點(diǎn)相對位姿,如圖11所示。由于DED成形機(jī)理中的熱變形及非近凈成形掃描路徑規(guī)劃等原因,圖11a中理論葉片模型點(diǎn)云偏向測量毛坯點(diǎn)云一側(cè),余量分布極為不均。圖11b顯示配準(zhǔn)后模型點(diǎn)云位于毛坯點(diǎn)云中間位置。
format-19.jpeg (198.52 KB, 下載次數(shù): 58)
下載附件
2022-10-12 10:51 上傳
(a)配準(zhǔn)前位姿 (b)配準(zhǔn)后位姿
圖11 中面配準(zhǔn)結(jié)果
繪制余量分布云圖(圖12)以更直觀地表達(dá)加工余量優(yōu)化結(jié)果。另外,統(tǒng)計(jì)配對點(diǎn)距離的均值dave、極值dmax、dmin與方差S2,用于定量反映余量信息。配準(zhǔn)前后余量統(tǒng)計(jì)結(jié)果如圖13和表3所示。配準(zhǔn)前后余量方差值自4.72大幅度減小至1.09,余量均勻程度明顯提高,表明了所提方法對余量優(yōu)化的顯著效果;余量最大值減小2.12 mm,最小值增大0.52 mm,說明粗加工道數(shù)明顯減少,可提高減材加工效率;因增材模型與理論模型在位姿變換前后體積不變,故dave無明顯變化。另外,觀察減材實(shí)驗(yàn)效果,經(jīng)所提算法優(yōu)化后避免了余量分布不均勻?qū)е碌臏p材余量不足現(xiàn)象,且減材加工誤差控制在±0.03 mm內(nèi),滿足使用精度要求,如圖14所示。綜上所述,中面動態(tài)配準(zhǔn)方法能顯著優(yōu)化加工余量。
format-20.jpeg (12.63 KB, 下載次數(shù): 65)
下載附件
2022-10-12 10:51 上傳
(a)中面配準(zhǔn)前 (b)中面配準(zhǔn)后
圖12 余量云圖
format-21.jpeg (9.33 KB, 下載次數(shù): 73)
下載附件
2022-10-12 10:51 上傳
(a)中面配準(zhǔn)前
format-22.jpeg (56.07 KB, 下載次數(shù): 66)
下載附件
2022-10-12 10:51 上傳
(b)中面配準(zhǔn)后
圖13 余量直方圖
format-23.jpeg (103.88 KB, 下載次數(shù): 75)
下載附件
2022-10-12 10:51 上傳
圖14 實(shí)驗(yàn)效果圖
表3 中面配準(zhǔn)前后余量統(tǒng)計(jì)結(jié)果
format-24.jpeg (24.96 KB, 下載次數(shù): 85)
下載附件
2022-10-12 10:51 上傳
減材后處理的加工時(shí)間直觀體現(xiàn)配準(zhǔn)效果對加工效率的影響。鑒于實(shí)際加工過程中裝夾、定位、換刀等輔助加工時(shí)間會影響實(shí)際有效加工時(shí)長的統(tǒng)計(jì),故本文采用PowerMill仿真軟件對比了案例余量優(yōu)化前后有效加工時(shí)長(包括進(jìn)刀、退刀及銑削加工時(shí)間)。減材加工采用PowerMill葉片加工策略,粗加工至余量2 mm,并以粗加工時(shí)間表征優(yōu)化前后加工效率。減材加工參數(shù)設(shè)置如表4所示。配準(zhǔn)后模型粗加工相比配準(zhǔn)前少加工兩道,時(shí)間縮短64 min 10 s,可見減材加工效率大幅度提高。
表4 PowerMill銑削粗加工仿真參數(shù)設(shè)置
format-25.jpeg (21.23 KB, 下載次數(shù): 66)
下載附件
2022-10-12 10:51 上傳
2.4 驗(yàn)證分析
2.4.1 不同檢測方案對余量優(yōu)化影響
采用2.2節(jié)相同步驟優(yōu)化以臺階效應(yīng)波峰處測量點(diǎn)云為配準(zhǔn)對象的加工余量,獲得變換矩陣對比組Rcon、Tcon:
format-26.jpeg (10.92 KB, 下載次數(shù): 69)
下載附件
2022-10-12 10:51 上傳
(9)
圖15給出了對應(yīng)余量優(yōu)化結(jié)果,圖16為配準(zhǔn)后余量分布云圖,可以看出余量分布相對均勻。圖17給出了對比組配準(zhǔn)后余量直方圖信息,與圖13b實(shí)驗(yàn)組配準(zhǔn)結(jié)果相比,兩組數(shù)據(jù)呈正態(tài)曲線分布且趨勢相近,但對比組期望值μ更大,表明存在更多大余量區(qū)域。
format-27.jpeg (19.53 KB, 下載次數(shù): 73)
下載附件
2022-10-12 10:51 上傳
圖15 對比組余量優(yōu)化結(jié)果
format-28.jpeg (13.84 KB, 下載次數(shù): 59)
下載附件
2022-10-12 10:51 上傳
圖16 對比組余量云圖
format-29.jpeg (9.41 KB, 下載次數(shù): 67)
下載附件
2022-10-12 10:51 上傳
圖17 對比組余量統(tǒng)計(jì)直方圖
表5顯示,相對于波谷實(shí)驗(yàn)組,波峰對比組余量均值dave增大0.3 mm,dmax增大0.89 mm。顯然,波谷測點(diǎn)構(gòu)建的外輪廓體積比波峰測點(diǎn)小。采用波峰處最大外輪廓配準(zhǔn),可能造成配準(zhǔn)后局部區(qū)域?qū)嶋H加工余量為零或負(fù)余量,導(dǎo)致毛坯報(bào)廢。另外,對比組S2值大于實(shí)驗(yàn)組S2值,說明對比組測點(diǎn)余量均勻性差。根據(jù)實(shí)際成形效果觀測,制造凸起類缺陷(如局部黏附粉末、球化等)集中在波峰處。該類缺陷嚴(yán)重影響真實(shí)輪廓構(gòu)建精度,進(jìn)而影響余量優(yōu)化結(jié)果。圖18顯示了DED毛坯上述缺陷。由于波峰處測點(diǎn)構(gòu)建毛坯外輪廓更大,故理論粗加工多一道,時(shí)間增長31 min 28 s,實(shí)際最外層銑削僅接觸波峰與凸起類缺陷處,存在大量空刀路。因此,波谷處構(gòu)建的截面線不僅能精確反映最小外輪廓,且可減少制造缺陷引起的非真實(shí)輪廓測點(diǎn)數(shù)量,更適用于減材余量優(yōu)化。
表5 不同在機(jī)檢測方案余量統(tǒng)計(jì)結(jié)果
format-30.jpeg (26.03 KB, 下載次數(shù): 62)
下載附件
2022-10-12 10:51 上傳
format-31.jpeg (140.86 KB, 下載次數(shù): 61)
下載附件
2022-10-12 10:51 上傳
圖18 激光定向沉積制造精度
2.4.2 不同配準(zhǔn)方法對余量優(yōu)化的影響
為進(jìn)一步驗(yàn)證本文所提余量優(yōu)化算法的準(zhǔn)確性,本節(jié)對比GAO等[16]提出的基于遺傳算法(genetic algorithm,GA)的加工余量優(yōu)化方法。該方法綜合考慮了定位、均勻及外包絡(luò)原則,目標(biāo)函數(shù)統(tǒng)一為
min fGA=alg(efix(R,T)+bexp(S2(R,T)+
cexp(1-P(D(R,T)
(10)
上式等號右邊三項(xiàng)分別對應(yīng)定位、均勻及外包絡(luò)原則,a、b和c為確定的權(quán)重系數(shù)。本文重新定義權(quán)重系數(shù)a=0.2、b=0.4、c=0.9,余量優(yōu)化結(jié)果如圖19與圖20所示。
format-32.jpeg (143.45 KB, 下載次數(shù): 70)
下載附件
2022-10-12 10:51 上傳
圖19 GA余量優(yōu)化方法余量優(yōu)化結(jié)果
format-33.jpeg (93.65 KB, 下載次數(shù): 63)
下載附件
2022-10-12 10:51 上傳
圖20 GA余量優(yōu)化方法余量云圖
圖21為上述方法余量優(yōu)化結(jié)果直方圖。相對于中面動態(tài)配準(zhǔn)方法,GA優(yōu)化后余量正態(tài)分布趨勢不明顯,效果不及所提方法。表6顯示,該方法所得余量平均值為3.62 mm、最大值為6.02 mm、最小值為0.84 mm、方差值為1.69。對比本文所提方法,平均余量僅相差0.06 mm,但最大余量增加0.19 mm,最小余量減少0.3 mm,配準(zhǔn)后理論加工時(shí)間也更長,余量優(yōu)化后的粗加工效率明顯不及所提方法。另外,需要指出,遺傳算法是模擬染色體交叉、變異等優(yōu)化求解,運(yùn)算周期較長,而中面動態(tài)配準(zhǔn)方法,因減少了點(diǎn)云數(shù)量且不采用隨機(jī)求解,一般在幾十秒即可完成計(jì)算。綜上所述,所提方法綜合性能優(yōu)于GA余量優(yōu)化方法。
format-34.jpeg (7.94 KB, 下載次數(shù): 89)
下載附件
2022-10-12 10:51 上傳
圖21 GA配準(zhǔn)方法余量統(tǒng)計(jì)直方圖
表6 GA余量優(yōu)化方法配準(zhǔn)結(jié)果
format-35.jpeg (33.82 KB, 下載次數(shù): 58)
下載附件
2022-10-12 10:51 上傳
3 結(jié)論
(1)所提在機(jī)檢測截面線構(gòu)建方法考慮了曲面類零件DED制造產(chǎn)生的臺階效應(yīng),利用臺階效應(yīng)波谷位置準(zhǔn)確構(gòu)建葉片最小外輪廓,避免測量由制造缺陷構(gòu)成的非真實(shí)外輪廓。余量優(yōu)化結(jié)果表明所提截面線構(gòu)建方法給出更大最小余量dmin及更小余量方差S2,可避免DED近凈成形余量優(yōu)化問題中局部余量不足現(xiàn)象。
(2)針對定位區(qū)域與待加工區(qū)域不同配準(zhǔn)精度要求,引入動態(tài)權(quán)重因子平衡不同目標(biāo)函數(shù)的博弈問題,同時(shí),通過構(gòu)造測量點(diǎn)云及理論模型點(diǎn)云中面,減少配準(zhǔn)點(diǎn)云數(shù)量。相較于現(xiàn)有遺傳算法余量優(yōu)化技術(shù),所提方法顯著提高了余量優(yōu)化效率。
(3)本文所提余量優(yōu)化方法能快速優(yōu)化DED毛坯與理論模型相對位置,均勻化減材加工后處理余量,可提高零件增減材復(fù)合加工效率并減小零件報(bào)廢率。后續(xù)減材規(guī)劃研究將進(jìn)一步驗(yàn)證和討論更復(fù)雜零件余量化后的效率提升效果。
參考文獻(xiàn):
[1] LIU S, SHIN Y C. Additive Manufacturing of Ti6Al4V Alloy:a Review[J]. Materials and Design, 2019, 164:1-23.
[2] 顧冬冬, 張紅梅, 陳洪宇, 等. 航空航天高性能金屬材料構(gòu)件激光增材制造[J]. 中國激光, 2020, 47(5):32-55.
GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser Additive Manufacturing of High-performance Metallic Aerospace Components[J]. Chinese Journal of Lasers, 2020, 47(5):32-55.
[3] DEBROY T, WEI H L, ZUBACK J S, et al. Additive Manufacturing of Metallic Components-process, Structure and Properties[J]. Progress in Materials Science, 2018, 92:112-224.
[4] KARUNAKARAN K P, SURYAKUMAR S, PUSHPA V, et al. Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing[J]. Robotics and Computer Integrated Manufacturing, 2010, 26(5):490-499.
[5] MAYER T, BRNDLE G, SCHNENBERGER A, et al. Simulation and Validation of Residual Deformations in Additive Manufacturing of Metal Parts[J]. Heliyon, 2020, 6(5):e03987.
[6] BIKAS H, STAVROPOULOS P, CHRYSSOLOURIS G. Additive Manufacturing Methods and Modelling Approaches:a Critical Review[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(1/4):389-405.
[7] 曹著明, 孫紅梅, 史海軍. 某五軸數(shù)控加工中心在線檢測關(guān)鍵技術(shù)研究[J]. 機(jī)械設(shè)計(jì)與制造, 2017(11):149-152.
CAO Zhuming, SUN Hongmei, SHI Haijun. The Research on the Key Technology of On-line Inspectionof a Five-axis NC Machining Center[J]. Machinery Design and Manufacture, 2017(11):149-152.
[8] AHN D, KWEON J H, KWON S, et al. Representation of Surface Roughness in Fused Deposition Modeling[J]. Journal of Materials Processing Tech., 2009, 209(15/16):5593-5600.
[9] KAJI F, BARARI A. Evaluation of the Surface Roughness of Additive Manufacturing Parts Based on the Modelling of CUSP Geometry[J]. IFAC-Papers Online, 2015, 48(3):658-663.
[10] SHEN B, HUANG G Q, MAK K L, et al. A Best-fitting Algorithm for Optimal Location of Large-scale Blanks with Free-form Surfaces[J]. Journal of Materials Processing Technology, 2003, 139(1/3):310-314.
[11] LI X, LI W, JIANG H, et al. Automatic Evaluation of Machining Allowance of Precision Castings Based on Plane Features from 3D Point Cloud[J]. Computers in Industry, 2013, 64(9):1129-1137.
[12] SUN Y W, XU J T, GUO D M, et al. A Unified Localization Approach for Machining Allowance Optimization of Complex Curved Surfaces[J]. Precision Engineering, 2009, 33(4):516-523.
[13] 張瑩, 劉敏, 張定華, 等. 基于在線檢測的葉片加工余量自適應(yīng)優(yōu)化方法[J]. 計(jì)算機(jī)技術(shù)與發(fā)展, 2014, 24(11):226-229.
ZHANG Ying, LIU Min, ZHANG Dinghua, et al. An Adaptive Approach for Machining Allowance Balancing for Blade Based on Online Measurement[J]. Computer Technology and Development, 2014, 24(11):226-229.
[14] YING Z, ZHANG D, WU B. An Approach for Machining Allowance Optimization of Complex Parts with Integrated Structure[J]. Journal of Computational Design and Engineering, 2015, 2(4):248-252.
[15] 張明德, 馬帥, 謝樂, 等. 大型船用螺旋槳自適應(yīng)加工方法研究[J]. 機(jī)械科學(xué)與技術(shù), 2019, 38(11):1752-1759.
ZHANG Mingde, MA Shuai, XIE Le, et al. Study on Adaptive Machining Method for Large Marine Propeller[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(11):1752-1759.
[16] GAO Y Z, DU Z J, LI M Y, et al. An Automated Approach for Machining Allowance Evaluation of Casting Parts[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(11):1043-1052.
[17] 岳晶. 整體葉輪在機(jī)檢測與加工余量優(yōu)化技術(shù)研究[D]. 武漢:華中科技大學(xué), 2016.
YUE Jing. Research on On-machine Measuring and Allowance Optimization Technology of the Integral Impeller[D]. Wuhan:Huazhong University of Science and Technology, 2016.
[18] 譚高山, 張濤, 張麗艷, 等. 基于動態(tài)精度評估機(jī)制的自適應(yīng)定位方法[J]. 計(jì)算機(jī)集成制造系統(tǒng), 2021, 27(12):3550-3558.
TAN Gaoshan, ZHANG Tao, ZHANG Liyan, et al. Adaptive Localization Method Based on Dynamic Accuracy Assessment Mechanism[J]. Computer Integrated Manufacturing Systems, 2021, 27(12):3550-3558.
[19] 王威振, 莫蓉, 萬能. 葉片模型公差約束條件下的配準(zhǔn)方法研究[J]. 計(jì)算機(jī)工程與應(yīng)用, 2013, 49(10):264-266.
WANG Zhenwei, MO Rong, WAN Neng. Tolerance Zone Constrained Registration Method for Aeroengine Blade Models[J]. Computer Engineering and Applications, 2013, 49(10):264-266.
[20] BESL P J, MCKAY N D. A Method for Registration of 3-D Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
[21] 劉宇, 熊有倫. 基于有界K-D樹的最近點(diǎn)搜索算法[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 36(7):73-76.
LIU Yu, XIONG Youlun. Algorithm for Searching Nearest-neighbor Based on the Bounded K-D Tree[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2008, 36(7):73-76.
[22] ARUN K S, HUANG T S, BLOSTEIN S D. Least-squares Fitting of Two 3-D Point Sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5):689-700.
[23] 孔劉偉, 王振忠, 葉超, 等. 五軸增減材混合加工中心集成開發(fā)技術(shù)研究[J]. 航空制造技術(shù), 2019, 62(6):53-59.
KONG Liuwei, WANG Zhenzhong, YE Chao, et al. Research on Developing Technology of Five-axis Additive-subtractive Hybrid Machining Center[J]. Aeronautical Manufacturing Technology, 2019, 62(6):53-59.
Subtractive Post-machining Allowance Optimization Considering Characteristics of DEDs
HOU Liang GUO Jing CHEN Yun YE Chao XU Yang ZOU Jiahao
Department of Mechanical and Electric Engineering,Xiamen University,Xiamen,F(xiàn)ujian,361005
Abstract: Complex free-form parts manufactured by DED had problems of uneven allowance distributions and severe stair-case effects. In order to optimize allowances for subtractive post-machining, a dynamic point cloud registration method using the mid-surface points of the deposited and theoretical parts was proposed to optimize the machining allowances, which took into consideration characteristics of the DED parts. Firstly, the section line of the minimum outer envelope of deposited complex free-form parts was constructed according to the deposition scanning path, and was used for obtaining the point cloud of the on-machine measurement. Secondly, the mid-surface points of the deposited and theoretical parts were extracted, and an iterative closest point with dynamic weights considering the multi-region allowance requirements was proposed to optimize the machining allowances. The feasibility of the algorithm was verified by two simple cases. Finally, a free-form blade of a centrifugal impeller was selected as a complex case for allowance optimization. The proposed method was also compared with the method for multi-region allowance using genetic algorithm. The results show that the proposed allowance optimization method is more accurate and efficient for rapid optimization of machining allowances for DED manufactured complex curved parts.
Key words: directed energy deposition(DED); allowance optimization; on-machine measurement; dynamic registration; stair-case effect
作者簡介:侯 亮,男,1974年生,教授、博士研究生導(dǎo)師。研究方向?yàn)榇笈總(gè)性化定制和增減復(fù)合制造等。發(fā)表論文197篇。E-mail:
hliang@xmu.edu.cn。陳 云(通信作者),女,1987年生,助理教授。研究方向?yàn)樵鰷p復(fù)合制造、難加工材料切削機(jī)理、精密檢測等。發(fā)表論文21篇。E-mail:
yun.chen@xmu.edu.cn。